3.199 \(\int \frac{A+B \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=107 \[ \frac{(3 A+B) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}} \]

[Out]

((3*A + B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^
(3/2)*d) - ((A - B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.216302, antiderivative size = 107, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.114, Rules used = {2978, 12, 2782, 205} \[ \frac{(3 A+B) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(A-B) \sin (c+d x) \sqrt{\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)),x]

[Out]

((3*A + B)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/(2*Sqrt[2]*a^
(3/2)*d) - ((A - B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx &=-\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{\int \frac{a (3 A+B)}{2 \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac{(3 A+B) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{4 a}\\ &=-\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}-\frac{(3 A+B) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 d}\\ &=\frac{(3 A+B) \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{(A-B) \sqrt{\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}\\ \end{align*}

Mathematica [C]  time = 1.11506, size = 212, normalized size = 1.98 \[ \frac{\frac{1}{2} i (A-B) e^{-\frac{1}{2} i (c+d x)} \left (-1+e^{i (c+d x)}\right ) \sqrt{1+e^{2 i (c+d x)}} \sqrt{\cos (c+d x)} \cos \left (\frac{1}{2} (c+d x)\right )+i (3 A+B) e^{\frac{1}{2} i (c+d x)} \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )} \cos ^3\left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\frac{1-e^{i (c+d x)}}{\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}}\right )}{d \sqrt{1+e^{2 i (c+d x)}} (a (\cos (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)),x]

[Out]

(I*(3*A + B)*E^((I/2)*(c + d*x))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]*ArcTanh[(1 - E^(I*(c + d*x)))
/(Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])]*Cos[(c + d*x)/2]^3 + ((I/2)*(A - B)*(-1 + E^(I*(c + d*x)))*Sqrt[1 +
E^((2*I)*(c + d*x))]*Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]])/E^((I/2)*(c + d*x)))/(d*Sqrt[1 + E^((2*I)*(c + d*x))
]*(a*(1 + Cos[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.55, size = 247, normalized size = 2.3 \begin{align*} -{\frac{-1+\cos \left ( dx+c \right ) }{4\,{a}^{2}d \left ( \sin \left ( dx+c \right ) \right ) ^{3}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( 2\,A \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2} \left ( \cos \left ( dx+c \right ) \right ) ^{2}-3\,A\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) \sqrt{2}\cos \left ( dx+c \right ) -B\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) \sqrt{2}\cos \left ( dx+c \right ) -2\,A \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{3/2}-2\,B\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}+2\,B\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\cos \left ( dx+c \right ) \right ){\frac{1}{\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}}}{\frac{1}{\sqrt{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^(3/2),x)

[Out]

-1/4/d*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))*(2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)*cos(d*x+c)^2-3*A*arcsin
((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)*2^(1/2)*cos(d*x+c)-B*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)*2^(
1/2)*cos(d*x+c)-2*A*(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)-2*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2+2*B*(
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c))/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/a^2/cos(d*x+c)^(1/2)/sin(d*x+c)
^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Fricas [A]  time = 1.64034, size = 447, normalized size = 4.18 \begin{align*} \frac{\sqrt{2}{\left ({\left (3 \, A + B\right )} \cos \left (d x + c\right )^{2} + 2 \,{\left (3 \, A + B\right )} \cos \left (d x + c\right ) + 3 \, A + B\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \,{\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, \sqrt{a \cos \left (d x + c\right ) + a}{\left (A - B\right )} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*((3*A + B)*cos(d*x + c)^2 + 2*(3*A + B)*cos(d*x + c) + 3*A + B)*sqrt(a)*arctan(1/2*sqrt(2)*sqrt(a
*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))) - 2*sqrt(a*cos
(d*x + c) + a)*(A - B)*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \cos{\left (c + d x \right )}}{\left (a \left (\cos{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}} \sqrt{\cos{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral((A + B*cos(c + d*x))/((a*(cos(c + d*x) + 1))**(3/2)*sqrt(cos(c + d*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x + c))), x)